CHEMISTRY LETTERS, pp. 1207-1210, 1977. Published by the Chemical Society of Japan

PHOTOLYSIS OF 1,3,4-OXADIAZOLES IN ALCOHOLS¹)

Otohiko TSUGE*, Koji OE, and Masashi TASHIRO Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812

Irradiation of 2,5-diphenyl-1,3,4-oxadiazole in alcohols induces a heterolytic addition of alcohols to the C=N bond of the oxadiazole, followed by cycloelimination to yield benzoic acid ester and benzonitrile imine. The latter reacts with the oxadiazole to form 4-benzamido-3,5-diphenyl-1,2,4-triazole which is photochemically transformed into benzamide and 3,5-diphenyl-1,2,4-triazole. Upon irradiation of 2phenyl-1,3,4-oxadiazole in methyl alcohol, the l:1 adduct is obtained.

Previously, we reported the unique photochemical additions of $furan^{2}$, $indene^{3}$, and benzo[b]-thiophenes⁴⁾ to the C=N bond of 2,5-diaryl-1,3,4-oxadiazole. We report here the novel photolysis of 1,3,4-oxadiazoles in alcohols which provided unambiguous evidence supporting heterolytic addition of alcohols to the C=N bond of 1,3,4-oxadiazoles.

When a solution of 1.11 g (5 x 10^{-3} mol) of 2,5-diphenyl-1,3,4-oxadiazole (<u>1a</u>) in 250 ml of methyl alcohol was irradiated, benzamide, methyl benzoate, and 3,5-diphenyl-1,2,4-triazole (<u>2a</u>) were obtained, together with recovery of <u>1a</u>. Neither reductive nor alkylated products were formed, although the

l	ROH	Products, %			Recovery
		ArCONH ₂	ArCO ₂ R	2	of 1, %
<u>la</u>	Me0H	42	19	31	34
11	EtOH	40	13	30	37
**	i-PrOH	54	10	15	38
y 1	t-BuOH ^{b)}	5	2	1	84
ΪĿ	MeOH	16	4	3	74
11	1-PrOH	22	trace	٦	78

Table 1. Photolysis of 2,5-Diary1-1,3,4-oxadiazoles (1) in Alcohols^{a)}

a) Irradiation was performed with Pyrex-filtered light from a 300-W high pressure mercury lamp (taika HLV-B) below 20° C for 20 hr, in a nitrogen atmosphere.

b) In this case, 4-benzamido-3,5-diphenyl-1,2,4-triazole (3) was isolated in 1% yield.

processes which have been observed for the photochemistry of imine systems in alcohols are photoreduction and photoalkylation. Irradiations of <u>la</u> and 2,5-di(p-tolyl)-1,3,4-oxadiazole (<u>lb</u>) in several alcohols were performed under similar conditions, and the results are summarized in Table 1.

<u>2a</u>: Mp 194-195^oC (lit.⁵⁾ mp 189^oC), IR 3200-2800 cm⁻¹ (NH), MS m/e 221 (M⁺), 193 (M⁺ - N₂), 118 (M⁺ - PhCN), 103, 91, 77. 3,5-Di(p-tolyl)-1,2,4-triazole (<u>2b</u>): Mp 255-257^oC, IR 3200-2800 cm⁻¹ (NH), MS m/e 249 (M⁺), 221 (M⁺ - N₂), 132 (M⁺ - MeC₆H₄CN), 117, 105, 103, 91.

The transformation of alcohols into the respective benzoates involves a fission of polar O-H bond rather than homolytically weaker α -C-H bond of alcohols. This is strongly supported by the formation of t-butyl benzoate upon irradiation of <u>la</u> in t-butyl alcohol having no α -hydrogen atom. In addition,

4-benzamido-3,5-diphenyl-1,2,4-triazole (3) among the photolysates of <u>la</u> in t-butyl alcohol was isolated. 3: Mp 239-240^oC (lit.⁵⁾ mp 240^oC); IR 3200-2800 (NH), 1680 cm⁻¹ (CO); MS m/e 340 (M⁺), 312 (M⁺ - N₂), 221 (M⁺ - PhNCO), 119, 105, 89, 77. Irradiation of <u>3</u> in methyl alcohol gave benzamide and <u>2a</u>, besides unidentified oily products. Therefore benzamide and <u>2a</u> shown in Table 1 may be interpreted as secondary products arising via photolysis of <u>3</u>. When a mixture of <u>la</u> and <u>lb</u> in methyl alcohol was irradiated, a mixture of three triazoles, <u>2a</u>, <u>2b</u>, and 3-phenyl-5-p-tolyl-1,2,4-triazole (<u>2c</u>) was formed together with the respective benzamides and benzoates.⁶

On the above observations, the reaction would proceed via initial formation of 2-alkoxy-2,5-diaryl-1,3,4-oxadiazoline A by the reaction of an excited state of 1 with the alcohol. This is followed by cycloelimination of A to yield benzoic acid ester and nitrile imine B, and subsequent 1,3-dipolar

cycloaddition of <u>B</u> to the C=N bond of <u>]</u> yields cycloadduct <u>C</u>. Ring opening of <u>C</u> with the concurrent hydrogen shift affords <u>3</u> which upon irradiation in alcohol is transformed into benzamide and <u>2</u>. The process of the formation of benzoic acid ester and <u>B</u> from <u>A</u> is analogous to that of thermolysis of 2methoxy-2,3,5-triaryl-1,3,4-oxadiazoline (<u>4</u>) in benzonitrile⁷⁾ (Scheme 2).

Upon irradiation in methyl alcohol for 5 hr, however, 2-phenyl-1,3,4-oxadiazole (<u>1c</u>) gave $l-(\alpha-methoxybenzylidene)-2-formylhydrazine (5) in 7% yield, together with 53% recovery of <u>1c</u>. Structural$

elucidation of 5 was accomplished on the basis of spectral data.

5: Mp 120-121^oC; IR 3200 (NH), 1740 cm⁻¹ (CO); NMR (CDC1₃) δ 3.80 (3H, s, 0CH₃), 7.3-7.8 (5H, m, Ar<u>H</u>), 8.76 (1H, d, C<u>H</u>O, J=11 Hz, changed to a singlet when treated with D₂O), 10.0 (1H, broad d, N<u>H</u>, J=11 Hz, exchanged with D₂O); MS m/e 178 (M⁺), 177, 149 (M⁺ - CHO), 147 (M⁺ - OMe), 134 (M⁺ - NHCHO),

105, 104, 103, 91, 77. The NH and formyl proton NMR signals of 5 are comparable to those of benzaldehyde formylhydrazone (6), mp 137-138°C.

Ph H δ 8.90(d, J=10 Hz) δ 7.93(s) δ 10.8(broad d, J=10 Hz) $\mathbf{6}$

It is interpreted that 5 is formed via 2-methoxy-2-phenyl-1,3,4-oxadiazoline \underline{D} as depicted in Scheme 3. The formation of 5 definitely shows a heterolytic addition of methyl alcohol to the C=N bond of <u>lc</u>. The mode of fission of intermediary adduct <u>D</u> is different from that of <u>A</u>; this seems to be somewhat analogous to the observation which the mode of thermolysis of 2-ethoxy-3,5-diaryl-1,3,4-oxadiazoline⁸⁾ differs from that of <u>A</u>.

References and Notes

- Photochemistry of Heterocyclic Chemistry. VIII. Part VII of this series: K. Oe, M. Tashiro, and O. Tsuge, Bull. Chem. Soc. Jpn., in submission.
- 2) O. Tsuge, M. Tashiro, and K. Oe, Tetrahedron, 29, 41 (1973).
- 3) K. Oe, M. Tashiro, and O. Tsuge, J. Org. Chem., <u>42</u>, 1496 (1977).
- 4) K. Oe, M. Tashiro, and O. Tsuge, Bull. Chem. Soc. Jpn., in submission.
- 5) R. Stolle, J. Prakt. Chem. [2], <u>73</u>, 277 (1906).
- 6) Photoproducts were isolated by chromatography on silica gel using chloroform as an eluent. The IR spectrum of the mixture of triazoles was very similar to those of triazoles $\underline{2a}$ and $\underline{2b}$, and its MS showed parent ions at m/e 249 ($\underline{2b}^+$), 235 ($\underline{2c}^+$), and 221 ($\underline{2a}^+$).
- 7) G. Scherowsky and H. Franke, Tetrahedron Letters, 1974, 1673.
- 8) G. Scherowsky and B. Kundu, ibid., 1972, 3169.

(Received August 11, 1977)